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ABSTRACT

One of the most difficult issues that must be addressed when studying a class of
parallel algorithms is the problem of choosing a model that captures the inherent
difficulty of implementing these algorithms on a multiprocessor architecture. Shared
memory models have proven to be an eilective tool for deriving lower bounds on the
complexity of comparison problems. In particular, a speed-up of Ig(P) is possible for the
problem of finding an elemert. in an N-element sorted list, and speed-ups of P/IglgP and
P are possible for merging N-element sorted lists on P processors for the cases of Na=P
and P <N respectively.

In practice, these speed-ups are not attainable since the shared memory models ig-
nore many practical considerations in multiprocessor systems, such as interprocessor
communications, distribution of data on local memories and limited fan-out of memory
locations. In this paper we introduce a model for parallel computation that is strictly
weaker than the shared memory models. The model is based on an actual machine
currently being constructed (ZMOB). We examine the communication facilities available
in the model and show that lower bounds for merging and searching on shared memory
models are atainable (within a constant)\The main results reported in the paper are:

-an O(IgN/IgP) algorithm for searching\an N-element sorted list distributed
on P processors.
-an O(N/P) algorithm for merging two N-elelnent lists on 2P processors.
-an O(lgn) algorithm for merging two N-element lists cn 2N processors.
-criteria and techniques for simulating CREW PRAM algorithms on ZMOB.
One of the techniques is used to establish an O(IgigN) lower bound
for merging two N-element lists on 2N processors.

Research sponsored by the Air Force Office of Scientific Research (AFSC), under Contract
F49620-83-C-0082. The United States Government is authorized to reproduce and distribute re-
prints for government purposes notwithstanding any copyright notation hereon.
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1. Introduction

————

During the last decade a significant amount of pro-

- , gress has been made towards the understanding of the value o
f; of parallelism for specific compﬁtational problems. Sort- 53;
3 ing, searching and merging are three of the most fundamen- ::j
tal tasks in computer science. Their significance 1{is due T
to the kev role they play in many domains of application. f;f
With the emergence of VLSI technology it is inevitable for ii;
us .to wonder how fast these tasks may be performed on a "]
parallel (multiprocessor) machine. However, in contrast to :iﬁ
Von-Neumann machines whose execution is well understood, ;ﬁ;
and for which we have a well established theory of the ?:f
time complexity of comparison problems, this is not the ;Z?
case for parallel machines. The problem is due to the ;;;
difficulty in correctly modeling the execution of a phvsi- jﬁj
cally realizable parallel computer. Thus, one of the most {J
difficult issues that must be addressed when studying a Q;E
class of parallel algorithms is the problem of chosing a -
model that captures the inherent difficulty of implement- ;:E
ing these algorithms on a multiprocessor architecture. "?
Many models have been proposed to solve this problem. Tﬁf
Roughly speaking, parallel models of computation belong :
to two categories: shared memory models and fixed inter- '-j
connection models. A tvpical shared memorv model allows 7‘1
many orocessors to read the same location simultaneouslvy, e
;
R
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but disallows concurrent writes to the same location. ig
Since the model allows concurrent reads and insists on ;:
exclusive writes it is known in the literature as the CREW -]
PRAM. Examples of fixed interconnection networks are the -
shuffle exchange network, mesh-connected array and n- ;j
Aimensional hyvpercube. - ")
Shared memorv models are currently not realizable 1in .f
practice. However, they serve as powerful analysis tools ;j
to derive lower bounds for parallel computers. That is, if ?T
we can show that the worst case time complexity of an Ei
algorithm is O(N) for the CREW PRAM, we have also esta- i:
blished that no fixed interconnection network based varal- %?
lel machine can perform faster (see [1] for-a spectrum of ;
models and their relationships). Establishing 1lower ;Q
bounds for searching, merging and sorting was indeed the T
motivation for the powerful comparison model introduced by
Valiant. In [8] several optimal algorithms for comvarison -
problems are presented. The algorithm for merging was fj
later shown to he implementable on the CREW PRAM [1],I[3]. )
This pvaver is a further stev in this direction. We o
introduce a model for parallel computation, called 7MOB. ' :g:
The ZMOB model is shown to be strictly weaker than the -E
CREW PRAM, Despite this fact we demonstrate that within _;
the constraints of this model we are still able to achieve ';
(up to a constant) the 1lower bounds for searching and ]
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merging that are attainable on a more powerful model of

- computation. Additionallv, we define two fundamental cri-

teria, that if obeved allow us to simulate any CREW PRAM !
algorithm on the model investigated in this paver. n.J
The outline of the paper is as follows: Ef?
In Section 2 we describe tﬁe parallel model of compu- R
tation used in this paper, and establish its relationship Eiﬁ
to the CREW PRAM.
_ —
In Section 3 we investigate the problem of searching jrf
an N-element sorted 1list. We define the criteria for §¥?
optimality of distribution of elements to processors, ;;;
and give an allocation function of elements to processors .lf
that allows us to search the list in O(N/P) time. This 5
algorithm is shown to be optimal. Since no communication ;:j
is needed after the element searched for is broadcast to i?ﬁ

b all the processors the result in Section 3 is not res-

tricted to ZMOB.

In Section 4 we present three algorithms for merging ]

two N-element strings on a P-processor ZMOB. Two of the

algorithms are shown to be optimal up to a constant.

. «
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Finally, in Section 5 we conclude with some thoughts
on extensions of the research reported in this paper, and

with a discussion of the cost effectiveness of the model

described in Section 2.

| 2. A Model for Parallel Computation

The model described in this section is based on ZMOB,

- a parallel multi-microprocessor system under development

at the University of Maryland f4]). 2ZMOB is to consist of
256 280A microprocessors connected to a host computer

{VAX-11/780) . Communication between machines is via a high

speed, 48 bit wide, 257 stage shift register called the
"conveyor belt". Each orocessor is connected to the con-
veyor belt via a collection of high speed 8-bit I/O

. registers, called its "mail stop". The registers are in

charge of interrupt control, buffering and address control

functions. The system is described in detail in [4,6].

E: We shall bhriefly describe here only the communication —_—
features necessary to understand the material in the sec- |

tions that follow.

S 2.1. ZMOB communication facilities ]

As mentioned above the processors communicate by

é; sending messages to each other on the " conveyor belt ". ——
Each processor sends information using its own uniquely ‘E

determined 1location on the belt, called its bin. Each R

]

]




% processor may read information from anv bin, including its
- own, depending on the control bits set in the message con-

tained in the bin. That is, each processor can theoreti-

cally consume any bin that is currently at its mail stop,

but it can send information out only in its own bin. The

' control bits in the message allow the implementation of

5
-
.

several communication strategies, as explained below. The
message contained in each bin may be described by a 4-
tuple: (C X S D), where C, X, S, D correspond to control,

message content, source address, and destination address,

respectively. Different control bits specify the follow-

ing communication formats:

COMM-1.

Direct addressing - The message X is sent to a pro-

cessor whose ohysical address is D. —

Pattern matching - Message X is sent to the first , Q

processor whose vattern (determined by Capability .

Code and Mask Registers in the Mail Stop) matches D.

COMM-3,

Send to all processors - Message X is sent to all

processors.

COMM-4 . __T
. -]

1

|

|

i

T

bl

Send to a set of processors - Message X is sent to
all processors whose patterns match D. Additionally,
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different settings of Control Registers in the Mall

Stop allow the following:

COMM-5.

Exclusive source - This mode provides exclusive

conversation between two orocessors and disables

interrupts from other orocessors.

-'.‘—Yrvf‘vv
} Iv,,‘.‘A

COMM-6.
Readback - This mode allows an individual processor
Ez to intercept any of its own messages that has gone
F: around the conveyor belt and was not consumed by any
ﬁ destination processor. -]

- Though in principle ZMOB is an asynchronous méchine,

for the ourpose of this paper we shall assume synchronous .

1

operation. That is, we assume that a unit time is a com-

plete revolution of the helt, starting from the point when

Lt a4y

every bin resides at the mail stop of the processor that c

L

owns that bin. The unit time ends when each processor has
had a chance to read the message that was sent to it. As

we shall see shortly, at each communication step only one

o

-

message mav be sent to any processor. Moreover, at each
communication step each processor may send out only one

message.

[

. . .
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2.2. ZMOB as a model for parallel computation E;;
Formalizing the above concepts, at each execution i;j
step ZMOB may be modeled as a dAirected graph. The nodes in :_;
the graph correspond to the processors connected on the if%
belt, and the arcs corréspond to the communication links *}i
among the processors. Each procéssor is assumed to have j;j
internal memory. The hardware configuration allows for a R
processor to communicate with all the processors connected R
to it in one revolution of the belt. The belt is assumed :Tj
to be so fast relative to the processors that each proces- ;fi
sor can communicate with the processors connected to it in ;i;
unit time. The interconnection toovology at each step is =
determined as follows: :i
1. 'If PE; sends a message by vphysical address then ,ﬁj
depending whether it was sent by COMM-1 or COMM-3 it ?fj
is assumed to be connected to one or all processors -
in the graph. 'i:
1
2. If PEi sends a message by pattern o to a set of pro- o
cessors then it is assumed to be connected to all the 1
processors that have o as their receiving pattern. —
3. Each processor may have multiple outgoing arcs. How-  f€
ever, it may output only one message at a time.
4. Each processor mavy have multiple incoming arcs. How- R
ever, it may receive only one message at a time. To 1




prevent confusion all the algorithms presented in the
paper assume that a oprocessor may have at most one

.- incoming arc. :

- 5. A processor may not have incoming and outgoing arcs
ﬁi at the same time. That is, at each revolution of the .

belt the processor is either receiving or sending

information, but not both.

To simplify matters we shall assume that each execu-

S 2@

tion step of ZMOB consists of two phases: a communication

step and an execution step. The communication step is

ﬁi further subdivided into a sending step, when all the pro- -
cessors load their respective bins, and a receiving step,
- - when all the processors consume the messages sent to them
il during the sending step. The execution step is assumed to
be one computational step of the processor, e.g., com-

- parison and addition of two integers. The computational

step is assumed to be at least as long as the communica-

tion step.

Conditions 1-3 make the model more wvowerful than a

simple communication ring. Conditions 4-5 Aistinguish the -
model from shared memory models such as the CREW-PRAM. To

i see that 2ZMOB is indeed weaker than a model that allows P
!L processors to read simultaneouslv from anvy location, one -

- needs to envision a CREW PRAM algorithm that in one atomic

step performs P reads from P locations, stored in a N-

A, PO S 4. e A A M 2 8 b Timm am B o i A ke o b m m e m m A A A A A A R A m s S m A & Aam A&
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location shared memory. To simulate the above situation
on ZMOB, we need to distribute the N locations on P pro-
cessors, by storing N/P locations in the internal memory
of each processor. Now, in the worst case, all the simul-
taneously read locations may reside in the same PE. Conse-
quently, if P processors are to read from some processor
PEi , we have P outgoing arcs from PEi. However, by condi-
tion 4, PEi can output only one element at a time. Thus, a
P-orocessor ZMOB can simulate an arbitrary P-processor

CREW PRAM in O(P) time, and the bound is tight.

In the following sections we shall show several

nontrivial adaptatinns of CREW PRAM algorithms for 2ZMOB,

sacrificing only a constant factor.

3. Searching

In this section we consider the problem of searching
for an element in an N-element sorted list , distributed
on P processors. The first thought that comes to mind is:
distribute the N elements evenlvy among the P processors
and perform a sequential hinarv search on each woprocessor.
However, this intuitivelv avpealing approach results i?/é/
negligible speed-up since each processor verforms

lg§=lgN-qu comparisons.

=
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3.1. Algorithm SEARCH

We €first present an algorithm for searching that may
be implemented on a shared memory computer capable of per-

forming concurrent reads.

Let x=(xl,...,xN) be a sorted list of N elements. For
simplicity assume N=s"+1-l, where s=P+1, Algorithm

SEARCH works as follows:

0. Let k=n

k

1. Mark the elements of x subscripted by is™,1<i .

2. Assign PE, to element isk

and compare it to the ele-
ment being searched for. At the end of this step PEi
records the result of the comparison in location

loc,.
i

3. Now each PEi compares loci , and loci_l . for 1<i .

If for some j loc_.,#locj_1 » then the searched ele-

ment is in the j-th interval.

4 Let k=k-1 and reindex the elements of the j-th inter-
val by 1, 1<1<sk |

5. Repeat steps 1-5 for the elements in the j-th inter-

val.

Since P comparisons are performed simultaneously in

k

steps 2-3 we reduce the prohlem of searching s  elements

(k-1)

to a problem of searching s elements. Thus, in Cn
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’ steps we can search the entire list (for some constant C).

Consequently the time complexity of the algorithm SEARCH

' is of order 4
]
i Referring to [2] we note that the algorithm is optimal. -
;i Note that step 3 in SEARCH may be performed on the :_}
E, ZMOB model introduced in Section 2 in one communication fif
= step, where PEi sends loci to PEi+1. Unfortunately, step f‘f
2 in the algorithm does not readily applv on the ZMOB |
model if we distribute the elements of x by assiqning the
fi:sﬁ % elements to the first PE, the following % elements ffj
to the second, and so on. To see this, one needs to _»?
observe that after the first comparison all the elements :;ﬁ
that need to be compared in the next step reside in the :ii

same PE. Since the model allows us to output only one S

o
PR

location at a time we have to multiply the complexity of

the algorithm by P, vielding quIg? . Obviously, one can
allocate all N elements of the list x to everv PE; but

this is hardlvy an optimal solution.

The analysis presented above suggested the question

of whether there is an allocation of elements to proces-

R BT

sors that has the following desirable proverty:

Definition: Given a varallel algorithm A, an allocation

of elements to the processors is said to be a good alloca-




12

tion for A if at any time during the execution of A when-

ever PEi performs an operation on some element, that ele-

ment already resides in the memory of PEi .
Lemma 3.1:

Let x=(x1,x2,...,xu) be a -sorted string. We shall

n+1_l'

assume N=s where s=P+1. Let s. be the representa-

J
tion of j, 1<j<N using the base s, i.e.,

j=a, s"+a, sn-1+,...,+a. sl+a,
In In-1 h Jo
Then, in algorithm SEARCH if PEi performs a comparison on

the element x. at steo k then

J
] j=a, sN+a. sn-1+’...'+a. sn-k+1
Jn ]n-l Jn-k+1
and a. =i .
Tn-k+1
Proof:

We shall orove the 1lemma using induction on the
nvnber of steps k.
For k=1 the elements being compared are indexed by is?,
1<i and PE; compares element is". Thus, if x4 is being

compared by PE,, then s.=is", and a. =i.
i 3 g

For 1<k , assume PEi compares xj. Bv the induction
hypothesis the elements comparéd at step k-1 were indexed

by integers of the form

-
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¥
j=aj sn+ai sy, ..., +rst (k-1)+1 ;Ia
n ‘n=1 T
5 for 1<r<s-1l. Assuming that the next searched interval is o
B ]
! given by ¢S
ay sM+a, sn-1+,...,+(ro-1)sn-k+2,a. sN+a, sﬂ"lh...,-&~r:os“-k+2 : f
n In-1 In Jn-1
i we find that at step k PE, compares the element sub- .
scripted by
" ay s"+aj s"']'-o»,...,+(1:0-1)s.""“'2+is“'k+1 oo
P n n-1 -
.
2 Q.E.D.
I
g As an immediate corollary of the lemma we have o
-
Theorem 3.2:
Let x,s,N be as above. Let cj be the coefficient of ;"J

the term with the smallest exponent in s,1i , i.e., the
representation of j in the base s. Let £(j) be the allo-
cation function of elements of x to orocessors PE;, , 1<i<P

f 3 _c R

Then f£(j) 1is a good allocation function for algo-

rithm SEARCH.

Proof:

The proof follows immediately €from Temma 3,1 bv

observing that whenever PE, compares element j it must be
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the case that

Q0.E.D.

4. Merging on ZMOB

In this section we address the problem of merging two
sorted strings of N numbers using P processors in a mul-
tiprocessor like ZMOB. We present three different algo-

rithms for merging with the following characteristics:

1. All have a sublinear lower bound.

2. All are based on enumeration - that is, at the end of
the merging every element knows its absolute location
in the string of lenath 2N obtained by merging the

two input strings of length N,

The algorithm for merging presented in Section 4.1

has a 1lower bound of 1g N, It €fullv utilizes the pattern B
matching capabilities of ZMOB. The algorithm presented in _H

Section 4.2 for merging two N-elements lists on 2N proces-

-y
sors is a nontrivial adaptation of Rruskal”s merging algo- ’
rithm ([3) for CREW-PRAM to 7ZMOB. This algorithm is

optimal ( up to a constant ). _—

The two algorithms in Sections 4.1 - 4.2 do not gen- ;

eralize to the case of merging N-element 1lists on P
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processors for P<N . Therefore, in Section 4.3 we present
an ootimal algorithm for merging two lists of length N
each on 2P processors for the case P<N ., The time com~-
plexitv of this algorithm is of order % . The optimality
of the algorithm in Section 4.3 is based on the observa-
tion that every parallel algorithm of time complexity T
may be converted to a sequential algorithm of complexity
PT and hence every parallel merging algorithm of order

0(%) is optimal.

4.1. Merging Using Selective Broadcasting

In this section we present an algorithm for merging
two N-element sorted strings of integers on a 2N-processor
ZMOB. We present a fairly detailed algorithm in order to
provide the wuser with intuition as to how a machine like

ZMOB may be programmed.

Let x=(x1,...,xN) and v=(y1,...,yN) be two sorted
lists of integers. The first string is stored in oroces-
sors Pl,...,PN, subsequently referred to as the X=-
processors, and the second string is stored in processors
PN+1"“'P2N' referred to as the y=-processors. The ele-
ments are stored in ascending order, one element ver pro-
cessor. To simplify the discussion we shall assume
without loss of generality that N=2"-1 , and that the end
elements of the string vy, Yy and vyr are -infinity and

+infinitv resvectivelv. Each processor has the following

]
I B
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variahles, .
1. N[i] = the integer stored in PE;

2. Index[i] = the position of N[i] in the string x or vy

depending whether PEi is an x-processor or a y-

processor.

3. PATTERN[i] = the pattern to be used by PE; during the

selective broadcast operation.

4. RES[i] = the result of the comparison performed by

PEi'

5. ENUM([i) = the final position of N[i] in an ordered

enumeration of the strings x and y.

6. TEMP[i] = the location of element X4 in the string
Yo By location we mean the index 3j such that
Vi<X§<V441-

For simplicity alqorithmb MERGE_4.1 is subdivided
into two phases. During the first phase we call the pro-
cedure FIND_PART_ ORDER, with the strings x and v, that
for each element X; finds its position in the list v. The
positions are stored in TEMP[i]. 1In the second phase the

procedure FIND_TOTAL_ORDER is called to find the ahsolute

location of each element in the resulting string.

Procedure FIND_PART_ORDER is called with parameters

(lx,ux) and (lv,uy) which correspond to the lower and

upper bounds of the two sorted strings x and y to be

p———
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merged. For simplicity we assume that the elements in the
strings are distinct. Initially we call FIND_PART_ORDER

with the parameters 1,N,N+1 and 2N. Procedure

FIND_PART_ORDER is given below.

Procedure FIND_PART ORDER( 1 ,u,,l )

x'“y'ly

begin

u -1
i=X_X 4,

2 X

0. For all j such that 1y<j2u, set
PATTERN[j] = 1.

1. Broadcast N[i] to all processors PEj such that

.
tysizay

2. For all j such that 1yiji“y let PEi compare N[j] to

N[i] and store the result of the comparison in RES[J].

3. By comparing RES[j]l with RES[j+1l]1, for all 3, such

that lyijiuv find the location of N[i]l in the string vy

and broadcast it to PEi .

4, Let TEMP[i] = the location of N([il in v,

Ohserve that lv—l < TEMP[i]iuv.

i€ 1x<i then

begin

Sy |

_—




..........

- S. For all j, such that lyijiuy set

(1-1,0/2%1y  §F NI§1<TEMP(i] L

(u—-1)/2+1 if N[31>TEMP (1]

PATTERN (§] = |
' x

] 6. Let . f:
lllex
3 12 =i+1 -]
’ u2x=ux

7. Let ]
i
l1Y lY .ﬁq
ul =TEMP [i o

v (i} )
i 12, =TEMP [i]+1 =
= -_1
u2y u, S

cobegin step 8 and step 9.

> 8. If 11Y>u1y then —_—
For all i, llxiii“1x' set TEMP[i] to ul,.
If 11 = }
3 v ulY then e
R begin -
FIND_PART_ORDER( 11 ,ul.,11,,ul )
For all i, 11 <i<ul , such that igTEMP[llv] set
Y TEMP[i] = 11.-1 . —
. . 1‘
' For all i, ll,ci<ul , such that i>TEMP[1l ] set ;
TEMP (1] = 11 -
- Y co
. -
g C
a .4__ - " PPN - a
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. end
Otherwise, ( lly<ulv ) call

! v FIND_PART_ORDER( 11 ,ul ,11 ,ul )

9, >u2
If 12y u v then

For all i, 12,<i<u2 , set TEMP[i] to u2,

If 12v=u2Y then
begin
i FIND_PART_ORDER ( lZy,u2y,llx,ulx )
, For all i, 12xii£u2x, such that igTEMP[lzy]
TEMP[i] = 12y-1
i Por all i, 12,<i<u2 , such that i>TEMP(12]

TEMP (1] = 12V
end

0 12
therwise, ( Y<u2Y ) call

—

2 2 .

FIND_ PART_ORDER ( 12x,uzx,1_y,1,,Y ) ;

coend steps 8-9. E

; e

end )

- %

end 1

' ~—

Explanation: B

- Intuitively, procedure FIND_PART ORDER works as fol- o
! lows:

|

EST SO S Zem s a -

set

set
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At steps 0-1 the middle element of x, X0 is broad-
cast to all the y-processors. This defines two segments of
x, X, and Xy In‘step 6 we determine the lower and the
upper bounds of each X-segment. Since we conveniently
have chosen N to be 2“—1, the length of each x-segment is
L.

At step 3 we find the location of the element in v.
This defines two segments of v, Y1 and Y2 . In step 7 we
determine the lower and the upper bounds of each vy-

segment.

Clearlyv we can now separately merge xl with Y, and
X2 with Yz . This is accomplished with the recursive

calls in steps 6-8, and the set up of the y-processors in
step 3. In step 3 all the Yl processors set their patterns

to the index of the middle element of xl. Similarly the

X2 processors set their pattern to the middle element of
X2.

There are several cases that need to be taken care of
separately. The first two cases arise when MEMP[i] < ly,
i.e. the middle element of x is smaller than all the ele-
ments in vy, or when TEMP[i] = u sub v, i.e., the middle
element of x is larger than all the elements in y. In the
former case we merge all the elements of xl to the left of

1 and the latter case we merge all the elements of x2 to

V,

the right of u,.
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The last exceptional case that needs to be taken
care of 1is the case when either Y1 or Y, is of length 1.
Without loss of generality assume that iyl =1 , the ele-
ment in Yl is Vi and the integer in Y, is N[I] . Clearly,
in this case the elements of x1 will be merged either to
the 1left or to the right of the element in Y, . Thus, the
position of each element in the segment Xl mav be deter-
mined by inserting the singleton element of y in Xl, which
mav be done by calling FIND_PART_ORDER with Yl and xl in
this order. Once the location of the y element in Xl has
been determined we can set the location of all the ele-
ments in Xl greater than N[I] to be N[i), and the loca-
tions of all the elements in Xl smaller then WN(l] to be
N[i]-1 .

Procedure FIND_PART_ORDER terminates when the size

of all x-segments is zero.

Proposition 4.1:

Algorithm FIND_PART_ORDER correctly finds the rela-
tive 1location of the x-elements in the string v in O(laN)
time.

Proof:

It is easy to see that each invocation of
FIND_PART ORDER with segments X , Y either finds the

location of X in ¥ in case X is a singleton 1list, or

T

[ S—
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creates two recursive calls: FIND_PART ORDER with ( X1 ,
Yl ) and FIND_PART_ORDER with ( X2 ’ Y2 ). The 1lengths
of Xl and X2 are smaller than X - Thus, algorithm
FIND_PART ORDER is guaranteed to terminate. It is also
easy to verify that algorithm FIND_PART_ORDER spans a
binary tree of recursive calls to FIND_PART_ORDER. At
level k of the binary tree 2X elements of X are merged
into ¥ simultaneously. At the root level the middle ele-
ment of X is compared to all the elements of Y, at the

second level two elements of X are compared to the "right"

elements of Y, and so on. Consequently, it suffices to

t———

orove by induction that at each level the chosen elements

of X are merged into the string Y in the correct loca-

—rry

tions. The proof using induction is similar to the proof

for Lemma 3.1 and is left as an exercise to the reader.

We must ensure that on each level, each processor is
required to compare its local element to only one element

of the other string. However, a processor may be asked to

e

compare more than one element at a time only if two calls

to FIND_PART_ ORDER are created with the same strings, and

o

this may happen only if the procedure FIND_PART_ORDER is
called with a Y or X string of length one. This case is

taken care of by the svecial check in steos 7-8,

ML D

Thus, algorithm FIND_PART_ORDER correctly finds the

vartial order of the elements of X in Y in O(lg(N)) time.

P
.
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At this point each x-processor knows its relative

location in the y~-string. Obviouslv, we can reverse the ‘
" parameters in the call to FIND_PART ORDER and determine :
the relative 1location of each y-element in x. Now, it :f
remains to show that we can find the absolute location of _5
each element; this is done by orocedure FIND_TOTAL_ORDER .
given below. -]
The input to FIND_TOTAL_ORDER is two sorted strings x ;~j
and vy, such that !x‘sly'sN . We assume each element in x ’ff
knows its relative location in v. We recall that by the F:;
relative location of X; in y we mean the j, 1<j<N such ;ii
that inxi<yj+1 . We also recall that each relative loca- "j
tion is stored in TEMP[i]. ?
The output of FIND_TOTAL_ORDER is: each x-processor -
knows its absolute location in the string resulting from m
merging x and v. 1
1
Algorithm FIND_TOTAL_ORDER (x,V) -y
begin E
1. For each j, 1<j<N-1 check if TEMP[§1 < TEMP([§ + 1]. 3
Mark all those PEs whose TEMP[j] 1is greater than —fq
TEMP(j-1]. We shall refer to such a processor as a g
locally minimal PE. A
2. For each j, 2<j<N check if TEMP([3j1 > TEMP(i - 1]. ——
Mark all those PEs whose TEMP([j] is smaller than TEMPI[J |
+ 1). We shall refer to such a orocessor as a locally
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maximal PE.
3. Now let each locallv maximal x-processor PEj send its
index INDEX[j] by pattern to the v~-processor indexed by
TEMP[3] + 1.
At the end of this step each y-processor that received a
message from an x-processor can compute its absolute
position bv adding the message content to its own index.
Note that each y-processor may receive at most one mes-
sage.
4. Now, for all j 1<j<N, such that PEj is not a locally
minimal PE, have PEj do:

PATTERN [§j] = TEMP[J]
5. Now, for all j 1<j<N, such that PEj is the 1locally
minimal PE, have PEj do:

Send INDEX[j] by pattern TEMP(j]
At the end of this step each PEj may compute its rela-

tive position among all those PEs with the same relative
location in y. This may he done by subtracting the
index of the 1locally minimal PE from the index of the
processor.
6. Now, for all j 1<j<N have PEj do:

PATTERN (§] = TEMP(J)
7. Let all the y-pbrocessors PEk that know their absolute
location broadcast it by the pattern INDEX[k] - 1.

8. Now each x-processor may compute its ahsolute loca-

tion bv adding the absolute location of y-orocessor

o e N S S, PP
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received at step 7 and the relative position computed at

: step S. R
. end ——j
5 Notes:

i 1. All the steps in FIND_TOTAL ORDER are atomic steps. -

Thus, the time complexity of FIND_TOTAL_ORDER is con-

stant.

i 2. By reversing parameters in the call to .
FIND TOTAL_ORDER we may find the absolute locations

of the elements of v in x.

Theorem 4.1:

Let x and y be two sorted strings of length N, dis-
tributed in ascending order on a 2N-processor ZMOB. Then

we can sort the two strings in O(lgN) time.

Proof: The theorem follows from Proposition 4.1 and the

constant time complexity of procedure FIND_TOTAL_ORDER.

4.2. Optimal Merging on 7MOB

In Section 3 we found that one way to achieve 1lower
bound wverformance on ZMOB is by distributing the informa-

tion in such a way that each time the P processors perform
P reads, we insure that each of the elements accessed hy

PEj already resides in the memorv of PEj. However, this
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is not always possible. In this section we use one more
fundamental trick that allows deriving an optimal ( up to

a constant ) merging algorithm.

Definition:

Given a parallel algorithm A, an allocation of ele-

ments to the processors is said to be a nearlv-good allo-

cation for A if at any time during the execution of A when
two distinct PE;s perform an operation on two elements s

and r the following holds:

1. The elements r and s reside in two different proces-

sors.

2. If the elements reside in the same PE then s = r,

Lemma 4.2:

Let A be some CREW PRAM algorithm and let f be a
nearly-good allocation function for A. Then the algorithm

A may be simulated on ZMOB in constant time.

Proof:

Each time P processors want to read P locations, they
broadcast the requests for these 1locations, We shall
assume that each vrocessor knows to what PE the location

it is trving to read has been allocated. Thus, at each
concurrent read step of algorithm A, P requests for loca-

tions are broadcast on the bus.

e

-
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Clearly, if there is no contention for processors the

fetches may be verformed by having each PE that has the

required location respond to the sender.

A problem may occur in cases when two or more oro-

cessors are contending for locations in the same proces-
sor. However, if £ was a nearly;good allocation function
for A, all the requested elements that reside in the same
PE are equal. Thus, the processor that received the
request for a location may send the location out by using
its own index as a vattern. Irrespective of the number of
requests sent to a processor it will consume and respond
to one request only. If all the processors that
requested the location set their receiving vattern to the
index of the ovrocessor they requested information from,
the data will be delivered to all those processors in unit
time. Thus, algorithm A may be simulated on ZMOB in con-

stant time,

QoEoDo

The lemma above has an immediate corollary.

Corollary 4.2:

A P-processor P-element memory CREW-PRAM algorithm

may be simulated on ZMOB in constant time.

Corollary 4.2 has an immediate imvortant avplication

to merging. In (3] we find an algorithm for merging two
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sorted N-element strings on an N-processor CREW-PRAM in

0(1glg(N)) time. The algorithm is ootimal up to a con- ' Zf

stant [8). Therefore, by Corollary 4.2 the algorithm may
hbe simulated on a 2N-processor 7MOB ;ith constant time
overhead. Kruskal’s algorithm performs the same functifn ;i
procedure FIND_PART ORDER performs in Section 4.2, that ',ﬁ
is, for each element it finds its relative location in the 2}
other string. Recalling that the time comolexity of ;;
FIND_TOTAL_ORDER for N=P is constant we conclude: "
Theorem 4.2: EE;
The lower bound for merging two WN-element sortéﬁ :j
strings on a 2N-processor ZMOB is O(lglg(N)). iij
4.3. Merging two long strings with a small number of pro- ;~:
cessors i
Let X Y be two sorted strings, and assume ‘x|=‘Y‘=N. i
In this section we show that we can merge the two strings _‘;
on a 2P processor ZMOB in O(N/P) time using algorithm
MERGE_4.3.
The input to MERGE_4.3 is given in the form of two . -;1
strings that are initially distributed in ascending order
on 2P processors. For simplicitv assume N=SP.
The output of MERGE_4.3 is: each processor knows its ahso- —
lute 1location in the string resulting from the merge. : i
Algorithm MERGE_4.3 is given below. 1
—
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Algorithm MERGE_4.3

l. Choose the elements indexed by iS in each string .
There are no more than P chosen elements in each string.
Moreover, there is only one chosen element in each proces-

sor., In fact the chosen element is the last element in

each PE,
2. Merge the chosen elements of each the strings. This

step may be done in O(lglgP) time as shown in Section 4.2.

Now, note that the chosen elements define P equal-length
intervals in each string, denoted by (xl""’xP) and
(Yl,...,YP) . At the end of this step we know to what
interval in the other string each chosen element belongs. —

In step 3 we find the exact relative position of each |
chosen element of X in Y. Delegate an x-processor to each

w ~ 9

chosen element of X. Set the pattern of this processor to

——

be the index of the interval in Y that the chosen element o

belongs to. Formally, let PEis set its receiving pattern f&ﬁ

to the index of the v-interval that element Xig is in. ;,q
3. Broadcast the content of each y-interval on the

belt. Note that each x-processor communicates with onlvy

one y-processor, while a v-processor may be communicating ;—%

with more than one x-processor or none at all. At the end

of this step each x-nrocessor contains the content of the

y-interval where the chosen element of x, residing in the —

x-processor, belongs. Now each x-processor mav find its

relative position in the string v, bv performing a | 1

a PPN it et - 3 P —— N A e oAl NS S Y
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sequential binary search on the content of the v-interval

}i it contains, Since the 1length of each v-interval is
; bounded by % + and each processor is required to output or
receive only one element at a time, the time complexitv of
steps 3 is of order O(N/P) + 1g(N/P) .

4. Repeat the above step for the chosen elements of Y.
The positions of the elements chosen in steo 1 and the
relative positions found in steps 3-4 define 2P segments
in each string denoted by xij and Yij respectively, where
1<j<2P. Each segment is defined uniquely by its right
end-point. This subdivision defines 2P disjoint pairs

(X,

1.'Yi.) that may be merged separatelv,

] B
5. Now, we DELEGATE (see below) 2P processors to the 29

pairs, Once the pair of x-y segments indexed by the same
integer ij' liijSZP » reside in the chosen processor, we
may merge them sequentially in O(%) time. This is true

since each segment in each vair is at most (g) long.

We must, therefore, show that DELEGATING 2P proces-

sors to the corresponding pairs of x-y segments may he

accomplished in 0(%) time. Without loss of generality we

shall discuss only the x-segments.

We first observe that at the end of step 4 each of
the 2P processors PEj contains an integer ey OgejgN, that
. corresponds to the end of some x-segment, The X=

& processors contain the ends of the x-segments defined in

I

S |
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- step 1, while the y-processors contain the ends of the x-
segments created in step 4. Additionally, each of the 2P
. ' processors contains some interval xi, which is the super-
|

set of the x-segment defined uniquely by the integer ej.

Thus, each PEj must determine the index i. and the 1lower

, J "
. bound of the segment defined by'ej. This task is performed .o
in O(N/P) steps by Algorithm 4.4. Once this problem is 17j

*

solved we may simply DELEGATE the i,

Jth segment to the pro-

cessor in which the end of that segment resides. .

;: Algorithm 4.4 ';3
—

’ l. Note that the integers in the x-processors define a -
¥ sorted list. Also note that the integers in the y- :f%
- processors define a sorted list. Thus, we may find the ?ﬁé
absolute order simply bv merging the integers in the x~- -

processors with the integers in the v-processors. This

may be done in O(lglgP) time. At the end of step 1 each

processor knows the index of the segment it is responsible
for and its upper bound.

2. Let T[§]1 be the index of PEj in the new enumeration.

In two steps PEj can find the lower bound of the segment

stored in PEj by communicating to PET[j]-l' This 1{is done
by letting each PEj set its pattern to T[j], and then let-

ting each PEj send its T[j1 by pattern to PET[j]+1 .

o] ]
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L Thus, the overall time complexity of Algorithm 4.4 is e
b e
3 of order lglgP. L)
' s s . <4
r- Similar argquments hold for the y-processors. s
r_ o
[ Finallv, each of the 2P processors contains a sorted o
i’ string of length at most 2N/P. The enumeration of all the =
gf 2N elements is straightforward and is left as an exercise f;1
L' to the reader. As a result we have the following theorem. Tg
3 -
& Theorem 4.3: 7
‘E—:? e
i Let X, Y bhe two sorted strings, and asssume ]
- ‘x’=}Y|=N. For N = SP, 1<S we can merge the two strings oo
distributed in ascending order on a 2P-processor ZMOB in Fi
O(N/P) time using 2P processors. 3
» l—i
Note: ~
Since the lower bound to merge two such strings on a ]

sequential computer is of order O(N), we conclude that the

algorithm presented above is optimal up to a constant, T

5. Summary :
-
In this paper we have investigated the oroblem of -—
searching and merging two N-element strings on a parallel }
model of computation (ZMOB). The main results reoorted in ‘}
this paper are: —
4
1. Parallel searching for an element on a N-element [i

string distributed on P processors may be operformed '
—
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on ZMOB in O (N/P) time. The algorithm given is

optimal up to a constant.

2. Two sorted strings of length N may be merged on a N-

processor 7MOB in O(lglgN) time.

3. Two sorted strings of length N may be merged on an

N-processor ZMOB in O(N/P) time.

The results reported in this paper may be used for
solving a variety of problems. Clearly, the 1gN merging

algorithm of Section 4.1 may be used to derive a 192N
sorting algorithm. In a subsequent paper we plan to extend
the results in Section 4 to derive an optimal nvarallel
algorithm for AND-ing (OR-ing) two binary strings
represented by run length codes. 1In this reoresentation a
binary string 1is represented by the value of the first
element of the string followed by a string of integers
that represent the successive runs of 0s and ls by their
respective lengths. For a large class of binary strings
this representation is more compact, and it is widely used
in the Aomain of signal and image processing. AND-ing and
OR-ing on a sequential computer may be performed in O(X)
time using this representation, where K is the number of
runs. We show that we can AND two strings having K runs

each in O(K/P) time on P processors. Parallel ©processing

of run length codes has not, to our knowledge, heen previ-

ously studied.

<
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" ' Although the algorithms iﬁ this pvaper were described
for a particular machine organization, thev generalize . ::l
naturally to any machine that satisfies conditions 1-5 in
Section 2. Note that all the algorithms presented in Sec-

tions 3-6 used relatively few communication 1links among z_i

L
.

processors. In fact at any step of the execution the
interconnection graphs induced by the algorithms had only R

P edges at the most. This is true since in all the algo-

wyor e T
A - ‘ B . .. ER . st

rithms either the x-processors communicated to the vy- —

processors and vice versa or the x-y processors communi-

¥ Y 4 e v e
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cated among themselves in a mesh-connected fashion. 1

In [7] it was arqued that broadcasting "cannot signi-
ficantly aid sorting algorithms". 1In this paper we have Zf‘

demonstrated that selective broadcasting allows a dynami-

cally reconfigurable interconnection topologv, and proves
to be an extremely powerful construct for mesh-connected ig}
like computers. In particular it allows one to attain

maximal speed-ups for searching and merging.

Finally, we would like to conclude with a pragmatic
remark., The philosophy behind 2ZMOB is simple. In manv
cases it is cost-effective to build a parallel machine
from a collection of slow, cheap processors connected by a
very fast communication medium. In other cases we would -
like to experiment with shared memorv or dynamicallv S

reconfigurable systems. In either case 7MOB may be an
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effective simulation tool. As mentioned in the introduc-
tion ZMOB is currently under construction at the Univer-
sity of Marvland. A l6-processor ZMOB is partially opera-
tional and is undergoing extensive testing and debugging,
and other processors are being connected to the conveyor
belt. The communication facilities described in Section 2
are fully supported on the belt though it is premature to
conjecture whether the theoretical model introduced in

this paper is indeed realizable in practice.
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